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INSTABILITY OF AN ELASTIC MATERIAL

K. N. Sawyers and R. S. RIvLIN

Center for the Application of Mathematics, Lehigh University, Bethlehem, Pa.

Abstract—Conditions are derived which are necessary for stability of incompressible elastic materials. These
are obtained by considering the speeds of small-amplitude plane waves superposed on a finitely deformed state
of the material.

1. INTRODUCTION

IN PREVIOUS papers, Toupin and Bernstein [1] and Hayes and Rivlin [2] have discussed
the propagation of plane small amplitude sinusoidal waves in an elastic material sub-
jected to an initial finite static deformation. In [2] the secular equation was obtained for
the wave speeds when the material is isotropic and the static deformation is pure homo-
geneous. Further, it was pointed out that if any of the wave speeds satisfying the secular
equation are non-real, the material must be inherently unstable. In the present paper, we
consider certain conditions on the strain—energy function which ensure this instability, in
the case when the material is incompressible. Ericksen [3] has discussed the propagation
of a second-order discontinuity in a deformed incompressible isotropic elastic material.
He obtained conditions for the principal velocities of propagation for transverse second-
order discontinuities to be real. Now, the velocities of propagation of a sinusoidal small-
amplitude wave in an elastic material, subjected to a homogeneous static deformation, are
the same as those for a propagating second-order discontinuity, with the same directions
of polarization and propagation. It follows that if the conditions obtained by Ericksen in
[3] are violated, the material is necessarily unstable.

In the present paper, we obtain further conditions which ensure material instability.
These could undoubtedly be obtained by appropriate specialization of the formalism of
Ericksen. However, we prefer to derive them directly from first principles, following a
procedure analogous to that adopted in the compressible case by Hayes and Rivlin [2].
Accordingly, in Section 2 we consider a small-amplitude plane sinusoidal wave to be
propagated in an arbitrary direction, in an incompressible isotropic elastic material sub-
jected to an initial static deformation and obtain a formula for the incremental Cauchy
stress assoctated with this deformation. Using this and the incremental equations of
motion, we obtain the secular equation in the case when the wave is propagated in a
direction lying in a principal plane and is linearly polarized in this plane. A condition is
obtained which, if satisfied, ensures that all of the wave speeds for such waves are real and,
if violated ensures that, for at least one direction in the principal plane, the wave speeds
are imaginary and the material is therefore unstable.
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2. SMALL DEFORMATION SUPERPOSED ON PURE HOMOGENEOUS
DEFORMATION

We consider an isotropic, incompressible elastic material to be subjected to a static
pure homogeneous deformation with principal extension ratios 1,, 4,, 1;. We take as
reference system a rectangular cartesian coordinate system x and consider that, in this
pure homogeneous deformation, a particle initially at £, moves to X;. The pure homo-
geneous deformation is then described by

X1=)~1§1, X2=/12Cvzs X:s:'{sfs- (2-1)

Now, suppose that superposed on this pure homogeneous deformation, we have a
plane sinusoidal wave, whose wave normal is in the direction of the unit vector /;and whose
angular frequency is w. The planes of constant phase and constant amplitude for the wave
are assumed to be the same. We assume that the amplitude of the superposed wave is
sufficiently small that we may neglect terms of second and higher degrees in the displace-
ment components associated with it, in comparison with those of first degree. We may
accordingly conveniently use the complex notation in describing this wave. Let u; be the
complex displacement vector associated with this wave. We write

u; = U expltax(S1; X ;—t)] (2.2)

where S is the complex slowness, ¢ denotes time, « = \/ — 1 and U, is a constant vector. We
restrict our discussion to waves which are linearly polarized in a constant direction. In
this case, we may, without loss of generality, take U, to be real. This is equivalent to speci-
fying the phase at x; = 0,t = 0.

As a result of the deformations described by (2.1) and (2.2) a particle which was initially
at £, moves to x;, wheret

X, = X;+u'. (2.3)
Let o;; be the Cauchy stress associated with the resultant deformation (2.3). We may write

_ —+
o,;,=2X,+0;, (2.4)
where X, is the stress associated with the pure homogeneous deformation (2.1) and o;;
is the complex incremental stress associated with the deformation (2.2).

For an isotropic incompressible elastic material, the strain energy W per unit volume
is expressible as a function of the strain invariants i, and i, defined by

i, =tre, i, = ${(tre)* —tre?)}, (2.5)
where c is the Finger strain defined byT
¢ = Hcij” = “xi,axj,a“‘ (2.6)

The fact that all deformations of an incompressible material are necessarily isochoric
may be expressed by the relation

=1, 2.7)

t Throughout the paper we shall use superscripts * and ~ to denote the real and imaginary parts respectively

of a complex quantity.
1 We use the notation , for é/6¢,.
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where i; is the strain invariant defined by
iy = detc. (2.8)
We may write
i =1;+i} (=123), (2.9

where I; is the value of i; associated with the pure homogeneous deformation (2.1) and i;
are the complex incremental strain invariants due to the deformation (2.2). Also, ¢;; may
be expressed as
Cij = C”+é$, (2.10)
where C;; is the Finger strain associated with the deformation (2.1) and ¢;; is the complex
incremental Finger strain due to the deformation (2.2). From (2.6) we have, with (2.1),
(2.2) and (2.3),
Ci = '1%’ Cyy = '12, Ciz = ,15, Cij =0 (i # J) (2.11)

and*
Cap = wwS(A3U Rl + 13U 4lp) expluexSLX; —1)).
From (2.5) and (2.7)-(2.11), we obtain
I, = 24+23+22, I, =A224 2340222, I, =223=1 (212

and

3
il = 2108 Z ’liUAlA expltw(SLX;—1)],

A=1

3
Iy =2wS Y A4, —i3)U 4, expli(SLX;—1)], (2.13)
A=1

3
iy = 2wS Y UL, expluo(SLX;—1)] = 0.

A=1

For an isotropic incompressible elastic material, the Cauchy stress o;; may be ex-
pressed in terms of the strain energy per unit volume by the formulae

Gij = l;— Py, 219
where
tii = 2[(wy +iwy)e;— wacucyl (2.15)
wy=0W/di,,  w, = dW/bi,,

and p is an arbitrary hydrostatic pressure. In accordance with equation (2.4), we can write

t; = T;+i}, p=P+p", (2.16)

ij

* We use the notation , for 8/0¢ , but do not adopt the summation convention for capital subscripts.
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where T;; and P are the values of ¢;; and p respectively for the deformation (2.1) and £;;
and p are their complex 1ncrements associated with the superposed deformation (2. 2)
From (2.15), we can write similarly

w, = W, +w/, w, = W, +w5, (2.17)

where W, and W, are the values of w, and w, for the deformation (2.1) and W, and w,
are their complex increments due to the superposed deformation. We have, of course,

W, = w| Wy =wyli,a=-1,1o- (2.18)

We shall also use the notation W,,, W,,, W,, = W,, to denote the values of 8?W/di?,
0*W/0i% and 0*W/di,di, respectively at i, = I,,i, = I,. Then

W= Wi+ Wiy, Wy = Wyl + Wy, (2.19)
With (2.13), this yields

iy,i2=1q,02°

3
Z Wi+, — AW, A2U 41, expleax(SLX;—1)]

(2.20)
w, = 2uwS Z Wy, +,— ZZ}AAUAIA explio(SLX;—1)).
It follows from (2.16), (2.15), (2.18) and (2.11) that
TAA = 2[(W1 + Il Wz)'{i - Wz'{j] (2.21)
Typ=0 (A # B)
and
tap = Typexpleax(SLX;—1)], (2.22)
where
3
T, = 4oS{[W,+(I,— 225)W1A5U 4+ Z AZRIW L+ Q21— 25— AW,
B=1
+I, = ADU—PYWas+ W,1Ulg) (2.23)
and

Tz = 20S[W, + (1, — 22— AW,0 (AL, U+ 515U ) (4 #B).

In the absence of body forces, the Cauchy stress g;;, given by (2.14) and (2.15), must
satisfy the equations of motion

do;; Ot; Op

—H= TUE i, 2.24
o, ox; ox, " (2.24)
where p is the density of the material. Introducing (2.16), bearing in mind that T;; is constant
and taking P = const., we obtain

oT;_oP _
0X; oX,

and (2.25)
ot _Bi

ox, X, = Pk,
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the first of these equations being identically satisfied. In the second of equations (2.25), we
introduce

p = Pexpuo(SLLX;—1), (2.26)
where P is a complex constant. Then, using (2.2), (2.22) and (2.26), we obtain
ST — Pl) = —poU,. (2.27)

3. PROPAGATION IN A PRINCIPAL PLANE

We shall now consider that the wave is propagated in the x,x,-plane, so that [; = 0,
and that the displacement vector is linearly polarized in this plane, so that U, = 0. Then,
from (2.27), we obtain

STy + 1L, Ty, —Pl) = —polU,

and _ _ _ (3.1)
LS(11T12+12T22—P12) = _pwUz.

The third equation of motion is automatically satisfied. Eliminating P from equations
(3.1), we obtain

WS[HLIAT — T22)+(l§_l%)le] = —pa(U,l; - U,l,). (3:2)
The incompressibility condition given by the last of equations (2.13) yields
U111+U212 =0. (33)

We note that this relation implies that the wave must be polarized in a direction per-
pendicular to the direction of propagation.
Then, from (3.2), (3.3) and (2.23), we obtain

2SHW, + MEW,)[A23 + 2212 + 13134, — A,)*A]U, = pU,. (3.4)
where
24, +A,)2
= W:LT;WZ(W‘ L 2A3W,, + ASW,,). (3.5)

We note that provided U, and U, are non-zero, the condition
2SHW, + AW [ AR + A3+ 1334, — A,)*A] = p (3.6)
must be satisfied.

4. MATERIAL INSTABILITY CRITERIA

It has been pointed out by Hayes and Rivlin [2] that for the material to be stable
for given values of 4, 4,, 4,, it is necessary that the slowness associated with propagation
in the deformed material of a plane linearly polarized sinusoidal wave of infinitesimal
amplitude be real for all directions of propagation and for all possible directions of
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polarization. Therefore, for the material to be stable the condition $% > 0 must be satisfied
for all possible values of /| and [,, ie, for

0<il<l, O0<B<l1, B+E=1 (4.1)

We note also the condition that the slownesses be real for waves propagated in the
direction (0, 1, 0) and linearly polarized in the x,-direction. From (3.6) this condition is

(cf. [3)
W, +23W, > 0. (4.2)

That this is a necessary condition for material stability also results from the following
consideration. The shear modulus must be positive for a small static shear in the x,-
direction, with the x,x,-plane, say, as the plane of shear superimposed on an underlying
pure homogeneous deformation.

It follows from (3.6) and (4.2) that a necessary condition for material stability is

® = A2+ 2R+ P, — )24 > 0 (4.3)

for all 1,, I, satisfying (4.1). We note that if 4, = 4,, then this condition is satisfied for all
A If 2, # A,and A = —(A+4,)*/(4, — 4,)*, we have

O = (4,12 -1,13)% (4.4)
® is then non-negative for all /,, !, and becomes zero when
B/ = A3/2; (4.5

It is evident from (4.3) that for specified values of I, and /,, @ increases as A increases and
decreases as A decreases. Thus, the condition that ® > 0 for all /,, [, satisfying (4.1) is
satisfied for A > —(4, +4,)*/(4, — 4,)*. However, for

A<~ + ) (2 = 4o), (4.6)

this condition is violated for [, and /, satisfying (4.5) and hence the material is inherently

unstable. Introducing the expression (3.5) for A4, the condition (4.6) becomes

B. = Wy, +243W 5+ A3W,,
3 W, + 1iW,

< —3d;—4)7% (4.7)

Two further analogous conditions are obtained by considering the propagation of waves
in the 23 and 31 planes. They are

W, | +202W, 4+ W, _
Bl — 11 W:_ilzlw 1 22< _%(/12_/{3) 2
2
and W 2;2W‘ i 4.8)
+ + _
Bz= i1 W2+,{22W 2 22< _%(13_'11) 2.
1 272

If any of these conditions is satisfied the material is unstable. If none of them is satisfied
and W, + 12W, > 0 (4 = 1,2, 3), the material is stable with respect to waves propagated
in the principal planes. We note that this is always the case for a Mooney-Rivlin material,
for which W, > 0 and W, > 0. For such a material, W,, = W, = W,, = 0. For many
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vulcanized rubbers it has been shown [4], [5] that W may, with reasonably good approx-
imation be written in the form

W=Cl,-3)+f,-3) (4.9)

where C is a constant and W,{= df/0l,) is a decreasing function of I, — 3, so that W, < 0.
The conditions (4.7) and (4.8) then place restrictions on the values which can be taken by
W,,.

Finally, we note that if W, and W, and the quantities B,, B, and B, defined in (4.7)
and (4.8) are known, W,,, W,, and W,, are uniquely determined by the relations

1
Wi = -z [543 =294, + A343(43 = ADA, + 4343043 - 29)45),

1
Wiz = 55 (03~ 194, +(3 =24, + (1 - 19 45),
1 4.10)
W,, = _K[(;é —AA, +(AF - ADA, + (AT - AD)4;),

where

A = (A2—2AY(A2—AD(A2—22).
and (A3 —23)(43 — A4 — 43) @.11)
Ap = Bo(W, +12W,) (P =1,2,3).

Thus measurement of the velocity of a wave propagated and polarized in each of the
principal planes determines W, ,, W, and W,,. It can also be seen [3] that the measure-
ment of the velocity of a wave propagated in each of two principal directions and polarized
in the third principal direction determines W, and W,.

Measurement of these five wave speeds is adequate for the determination of the wave
speed in an arbitrary direction, not necessarily in a principal plane, since this wave speed
is also determined by W,, W,, W,,, W,,, W,,.

Acknowledgement—This paper was written with the support of the Office of Naval Research under Contract
No. N00014-67-0370-0001 with Lehigh University.

REFERENCES

{1} R. A.Tourin and B. BERNSTEIN, J. Acoustical Soc. 33, 216 (1961).

[2] M. A. Hayes and R. S. RIVLIN, Arch. Rat'l Mech. Anal. 8, 15 (1961).

[3] J. L. ERICKSEN, J. Rat’l Mech. Anal. 2, 141 (1953).

[4] R.S. RivLIN and D. W. SAUNDERS, Phil. Trans. A243, 251 (1951).

[5] S. M. GuMBRELL, L. MULLINs and R. S. RIVLIN, Trans. Faraday Soc. 49, 1495 (1953).

{Received 7 July 1972)

AbcTpakr—OnpeemoTes HeobxomuMBble YCOBHA Ui YCTOHYHBOCTH HECKNMAEMEIX YIPYTHX MATEPHAJIOR.
OHY NONYYAKOTCH DYTEM DPacCMOTPEHHA CKOpPOCTeH TUIOCKHX BOJAH Manod aMIUIMTYAB HAMOXKEHHBIX Ha
KOHEeHHO ehOPMHPOBAHHOE COCTOAHNE MaTepHana,



