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INSTABILITY OF AN ELASTIC MATERIAL

K, N. SAWYERS and R. S. RIVLIN

Center for the Application of Mathematics, Lehigh University, Bethlehem, Pa.

Abstract-Conditions are derived which are necessary for stability of incompressible elastic materials. These
are obtained by considering the speeds of small-amplitude plane waves superposed on a finitely deformed state
of the material.

1. INTRODUCTION

IN PREVIOUS papers, Toupin and Bernstein [1] and Hayes and Rivlin [2] have discussed
the propagation of plane small amplitude sinusoidal waves in an elastic material sub
jected to an initial finite static deformation. In [2] the secular equation was obtained for
the wave speeds when the material is isotropic and the static deformation is pure homo
geneous. Further, it was pointed out that if any of the wave speeds satisfying the secular
equation are non-real, the material must be inherently unstable. In the present paper, we
consider certain conditions on the strain-energy function which ensure this instability, in
the case when the material is incompressible. Ericksen [3] has discussed the propagation
of a second-order discontinuity in a deformed incompressible isotropic elastic material.
He obtained conditions for the principal velocities of propagation for transverse second
order discontinuities to be real. Now, the velocities of propagation of a sinusoidal small
amplitude wave in an elastic material, subjected to a homogeneous static deformation, are
the same as those for a propagating second-order discontinuity, with the same directions
of polarization and propagation. It follows that if the conditions obtained by Ericksen in
[3] are violated, the material is necessarily unstable.

In the present paper, we obtain further conditions which ensure material instability.
These could undoubtedly be obtained by appropriate specialization of the formalism of
Ericksen. However, we prefer to derive them directly from first principles, following a
procedure analogous to that adopted in the compressible case by Hayes and Rivlin [2].
Accordingly, in Section 2 we consider a small-amplitude plane sinusoidal wave to be
propagated in an arbitrary direction, in an incompressible isotropic elastic material sub
jected to an initial static deformation and obtain a formula for the incremental Cauchy
stress associated with this deformation. Using this and the incremental equations of
motion, we obtain the secular equation in the case when the wave is propagated in a
direction lying in a principal plane and is linearly polarized in this plane. A condition is
obtained which, if satisfied, ensures that all of the wave speeds for such waves are real and,
if violated ensures that, for at least one direction in the principal plane, the wave speeds
are imaginary and the material is therefore unstable.
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2. SMALL DEFORMATION SUPERPOSED ON PURE HOMOGENEOUS
DEFORMATION

We consider an isotropic, incompressible elastic material to be subjected to a static
pure homogeneous deformation with principal extension ratios AI' A2' A3' We take as
reference system a rectangular cartesian coordinate system x and consider that, in this
pure homogeneous deformation, a particle initially at ~a moves to Xi' The pure homo
geneous deformation is then described by

(2.1)

Now, suppose that superposed on this pure homogeneous deformation, we have a
plane sinusoidal wave, whose wave normal is in the direction of the unit vector Ij and whose
angular frequency is w. The planes of constant phase and constant amplitude for the wave
are assumed to be the same. We assume that the amplitude of the superposed wave is
sufficiently small that we may neglect terms of second and higher degrees in the displace
ment components associated with it, in comparison with those of first degree. We may
accordingly conveniently use the complex notation in describing this wave. Let U i be the
complex displacement vector associated with this wave. We write

(2.2)

where S is the complex slowness, t denotes time, L = .J -1 and Vi is a constant vector. We
restrict our discussion to waves which are linearly polarized in a constant direction. In
this case, we may, without loss of generality, take Vi to be real. This is equivalent to speci
fying the phase at Xi = 0, t = O.

As a result of the deformations described by (2.1) and (2.2) a particle which was initially
at ~i moves to Xi' wheret

(2.3)

Let aij be the Cauchy stress associated with the resultant deformation (2.3). We may write

(2.4)

where Lij is the stress associated with the pure homogeneous deformation (2.1) and (iij

is the complex incremental stress associated with the deformation (2.2).
For an isotropic incompressible elastic material, the strain energy W per unit volume

is expressible as a function of the strain invariants i 1 and i 2 defined by

it = tr c,

where c is the Finger strain defined byt

(2.5)

(2.6)

The fact that all deformations of an incompressible material are necessarily isochoric
may be expressed by the relation

(2.7)

tThroughout the paper we shall use superscripts + and - to denote the real and imaginary parts respectively
of a complex quantity.

1: We use the notation .' for a/a~ •.
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where i 3 is the strain invariant defined by

i 3 = det c.

We may write
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(2.8)

(j = 1,2,3), (2.9)

where I j is the value of i j associated with the pure homogeneous deformation (2.1) and Ij
are the complex incremental strain invariants due to the deformation (2.2). Also, cij may
be expressed as

(2.10)

where Cij is the Finger strain associated with the deformation (2.1) and cij is the complex
incremental Finger strain due to the deformation (2.2). From (2.6) we have, with (2.1),
(2.2) and (2.3),

(i "# j) (2.11 )

and*

From (2.5) and (2.7H2.11), we obtain

(2.12)

and
3

'1 = 2wJS L A~UA1Aexp[tw(SliXi-t)],
A=1

3

12 = 2twS L A~(Il-A~)U)Aexp[tw(SliXi-t)],
A=1

3

13 = 2tWS L U)A exp[tw(SliXi-t)] = O.
A=1

(2.13)

For an isotropic incompressible elastic material, the Cauchy stress (Jij may be ex
pressed in terms of the strain energy per unit volume by the formulae

(2.14)

where

(2.15)

and p is an arbitrary hydrostatic pressure. In accordance with equation (2.4), we can write

p=P+p+, (2.16)

* We use the notation ,A for a/a~A' but do not adopt the summation convention for capital subscripts.
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where T;j and P are the values of tij and p respectively for the deformation (2.1) and tij
and p are their complex increments associated with the superposed deformation (2.2).

From (2.15), we can write similarly

(2.17)

where WI and W2 are the values of WI and W2 for the deformation (2.1) and ii\ and W2

are their complex increments due to the superposed deformation. We have, of course,

(2.18)

We shall also use the notation WI I , W22 , WI2 = W21 to denote the values of o2W/oif,
o2W/oi~ and o2W/oi l oi2 respectively at i l = II, i 2 = 12 , Then

(2.19)

With (2.13), this yields
3

WI = 2LWS L {WII+(1I-A~)WdA~U)Aexp[Lw(SI;Xi-t)J
A=I

3

W2 = 2LWS L {W21 +(1 I -A~)W22}A~U)A exp[Lw(SliX;-t)].
A=l

It follows from (2.16), (2.15), (2.18) and (2.11) that

TAA = 2[(WI +I I W2)A~ - W2A~J

(A # B)

and

where
3

TAA = 4LWS{[WI +(11-2A~)W2JA~U)A+ L A~A~[WII +(2II-A~-A~)W12
B=I

and

(2.20)

(2.21)

(2.22)

(2.23)

TAB = 2LWS[WI +(1 I -A~ -A~)W2J(A~IAUB+AMBUA) (A #B).

In the absence of body forces, the Cauchy stress aij, given by (2.14) and (2.15), must
satisfy the equations of motion

oaij otij op ..
- = --- = pu· (2.24)
oXj OXj ox; "

where p is the density ofthe material. Introducing (2.16), bearing in mind that T;j is constant
and taking P = const., we obtain

and (2.25)
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the first of these equations being identically satisfied. In the second of equations (2.25), we
introduce

p = Pexptev(SliXi-t), (2.26)

where P is a complex constant. Then, using (2.2), (2.22) and (2.26), we obtain

LS(l/Tij-Pli) = -pwUj • (2.27)

3. PROPAGAnON IN A PRINCIPAL PLANE

We shall now consider that the wave is propagated in the x lx2-plane, so that 13 = 0,
and that the displacement vector is linearly polarized in this plane, so that U3 = O. Then,
from (2.27), we obtain

and
LS(lI'1'll +/2'1'12 -Pld = -pwU I

LS(lI'1'12 +12'1'22 - P12) = - pwU2'

(3.1)

The third equation of motion is automatically satisfied. Eliminating P from equations
(3.1), we obtain

(3.2)

The incompressibility condition given by the last of equations (2.13) yields

(3.3)

We note that this relation implies that the wave must be polarized in a direction per
pendicular to the direction of propagation.

Then, from (3.2), (3.3) and (2.23), we obtain

(3.4)

where

(3.5)

We note that provided Uland U 2 are non-zero, the condition

(3.6)

must be satisfied.

4. MATERIAL INSTABILITY CRITERIA

It has been pointed out by Hayes and Rivlin [2] that for the material to be stable
for given values of AI, A2 , A3 , it is necessary that the slowness associated with propagation
in the deformed material of a plane linearly polarized sinusoidal wave of infinitesimal
amplitude be real for all directions of propagation and for all possible directions of
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polarization. Therefore, for the material to be stable the condition SZ > 0 must be satisfied
for all possible values of II and Iz, i.e., for

o~ Ii ~ 1, 0 ~ I~ ~ 1, Ii + I~ = 1. (4.1)

We note also the condition that the slownesses be real for waves propagated in the
direction (0,1,0) and linearly polarized in the xI-direction. From (3.6) this condition is
(cf. [3J)

(4.2)

That this is a necessary condition for material stability also results from the following
consideration. The shear modulus must be positive for a small static shear in the XI
direction, with the xlxz-plane, say, as the plane of shear superimposed on an underlying
pure homogeneous deformation.

It follows from (3.6) and (4.2) that a necessary condition for material stability is

<1> = Ai/i+A~/~+/i/W'1 -Az)ZA > 0 (4.3)

for all II' Iz satisfying (4.1). We note that if Al = Az, then this condition is satisfied for all
A. If Al "# Az and A = -(AI + Az)Zj(A I -)~z)Z, we have

<1> = (Alii - Az/~)z. (4.4)

<1> is then non-negative for all/ l , Iz and becomes zero when

lij/~ = AzjA I · (4.5)

It is evident from (4.3) that for specified values of II and Iz, <1> increases as A increases and
decreases as A decreases. Thus, the condition that <1> > 0 for all II' Iz satisfying (4.1) is
satisfied for A > -(AI +Az)Zj(A I -Az)z. However, for

(4.6)

(4.7)

this condition is violated for II and Iz satisfying (4.5) and hence the material is inherently
unstable. Introducing the expression (3.5) for A, the condition (4.6) becomes

B = WlI +2A~Wlz+A~Wzz< _1.(,1 -A )-z.
3 WI + A~Wz 2 I Z

Two further analogous conditions are obtained by considering the propagation of waves
in the 23 and 31 planes. They are

(4.8)and

WI I + 2,1iW12 + A~WzZ I Z
B I = Z < -z(Az- A3)-

WI +AIWz

WII+2A~W12+A~Wzz I z
Bz = z < -z(A3 -,11)- .

WI +AzWz

If any of these conditions is satisfied the material is unstable. If none of them is satisfied
and WI +A~Wz > 0 (A = 1,2,3), the material is stable with respect to waves propagated
in the principal planes. We note that this is always the case for a Mooney-Rivlin material,
for which WI > 0 and Wz > O. For such a material, WI I = WIZ = Wzz = O. For many
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vulcanized rubbers it has been shown [4J, [5] that W may, with reasonably good approx
imation be written in the form

(4.9)

(4.10)

where C is a constant and W2(= aj/al2) is a decreasing function of l2 - 3, so that W22 < O.
The conditions (4.7) and (4.8) then place restrictions on the values which can be taken by
W22 ·

Finally, we note that if WI and W2 and the quantities B I , B2 and B3 defined in (4.7)
and (4.8) are known, WI I , W 12 and W22 are uniquely determined by the relations

WI I = -±[A~A~(A~-A~)AI +A~At(A~ At)A2+AtA~(At-A~)A3J,

WI2 = 2~ [(Ai-A~)AI +(A~-At)A2+(At-Ai)A3J,

W22 = -±[(A~-A~)Al +(A~-Ai)A2+(Ai-A~)A3J,

where

(4.11)and
Li = (A~-A~)(A~-M)(Ai-A~).

Ap = Bp(WI +A~W2) (P = 1,2,3).

Thus measurement of the velocity of a wave propagated and polarized in each of the
principal planes determines WI I , WI2 and W22 . It can also be seen [3] that the measure
ment of the velocity ofa wave propagated in each of two principal directions and polarized
in the third principal direction determines WI and W2 •

Measurement of these five wave speeds is adequate for the determination of the wave
speed in an arbitrary direction, not necessarily in a principal plane, since this wave speed
is also determined by WI' W2, WI I , W12 , W22 .
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A6cTpaKT--0IIpe.llemIIOTCli Hoo6xo.II.HMble YCJIOBHlI.llJIli yCTOl!'IHBOCTH HeC'lCHMaeMblX ynpyrHx MaTepHlUIoB.

OHH IIOJIY1faIOTClI nyTeM paCCMOTpeHHlI CKOPOCTeR IIJIOCKHX BOJIH MaJIoR aMIIJIHTY.llbl HanO)KeHHblX Ha

KOHe1fHO .llel\>opMHpoBaHHOe COCTOllHHe MaTepHana.


